Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 287
Filtrar
1.
Aging Cell ; : e14171, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38572516

RESUMO

Aging represents a multifaceted process culminating in the deterioration of biological functions. Despite the introduction of numerous anti-aging strategies, their therapeutic outcomes have often been less than optimal. Consequently, discovering new targets to mitigate aging effects is of critical importance. We applied Mendelian randomization (MR) to identify potential pharmacological targets against aging, drawing upon summary statistics from both the Decode and FinnGen cohorts, with further validation in an additional cohort. To address potential reverse causality, bidirectional MR analysis with Steiger filtering was utilized. Additionally, Bayesian co-localization and phenotype scanning were implemented to investigate previous associations between genetic variants and traits. Summary-data-based Mendelian randomization (SMR) analysis was conducted to assess the impact of genetic variants on aging via their effects on protein expression. Additionally, mediation analysis was orchestrated to uncover potential intermediaries in these associations. Finally, we probed the systemic implications of drug-target protein expression across diverse indications by MR-PheWas analysis. Utilizing a Bonferroni-corrected threshold, our MR examination identified 10 protein-aging associations. Within this cohort of proteins, MST1, LCT, GMPR2, PSMB4, ECM1, EFEMP1, and ISLR2 appear to exacerbate aging risks, while MAX, B3GNT8, and USP8 may exert protective influences. None of these proteins displayed reverse causality except EFEMP1. Bayesian co-localization inferred shared variants between aging and proteins such as B3GNT8 (rs11670143), ECM1 (rs61819393), and others listed. Mediator analysis pinpointed 1,5-anhydroglucitol as a partial intermediary in the influence LCT exhibits on telomere length. Circulating proteins play a pivotal role in influencing the aging process, making them promising candidates for therapeutic intervention. The implications of these proteins in aging warrant further investigation in future clinical research.

2.
Clin Exp Dermatol ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38648509

RESUMO

BACKGROUND: Elderly-onset seborrheic dermatitis (SD) seriously affects the quality of life. However, associations between air pollution exposures and elderly-onset SD incidence have not been elucidated. OBJECTIVES: Investigate air pollution's role in the incidence of elderly-onset SD. METHODS: We engaged a prospective cohort analysis utilizing the UK Biobank database. Exposure data for specific air pollutants (PM2.5, PM2.5-10, NOX, NO2, and PM10) spanning various years was incorporated. Through a composite air pollution score constructed from five pollutants and employing Cox proportional hazards models, the relationship between pollution and SD was delineated. RESULTS: Our examination of 193,995 participants identified 3,363 SD cases. Higher concentrations of specific pollutants, particularly in the upper quartile (Q4), were significantly linked to an elevated SD risk. Notably, PM2.5, PM10, NO2, and NOX exhibited hazard ratios of 1.11, 1.15, 1.22, and 1.15, respectively. The correlation was further solidified with a positive association between air pollution score increments and SD onset. Intriguingly, this association was accentuated in certain demographics, including younger males, the socioeconomically deprived, smokers, daily alcohol consumers, and those engaging in regular physical activity. CONCLUSIONS: Our findings revealed that air pollution exposures were associated with elderly-onset SD incidence. These results emphasize the importance of preventing environmental exposures to the risk of SD development.

3.
World J Diabetes ; 15(3): 348-360, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38591076

RESUMO

As a common hyperglycemic disease, type 1 diabetes mellitus (T1DM) is a complicated disorder that requires a lifelong insulin supply due to the immune-mediated destruction of pancreatic ß cells. Although it is an organ-specific autoimmune disorder, T1DM is often associated with multiple other autoimmune disorders. The most prevalent concomitant autoimmune disorder occurring in T1DM is autoimmune thyroid disease (AITD), which mainly exhibits two extremes of phenotypes: hyperthyroidism [Graves' disease (GD)] and hypo-thyroidism [Hashimoto's thyroiditis, (HT)]. However, the presence of comorbid AITD may negatively affect metabolic management in T1DM patients and thereby may increase the risk for potential diabetes-related complications. Thus, routine screening of thyroid function has been recommended when T1DM is diagnosed. Here, first, we summarize current knowledge regarding the etiology and pathogenesis mechanisms of both diseases. Subsequently, an updated review of the association between T1DM and AITD is offered. Finally, we provide a relatively detailed review focusing on the application of thyroid ultrasonography in diagnosing and managing HT and GD, suggesting its critical role in the timely and accurate diagnosis of AITD in T1DM.

4.
Biol Trace Elem Res ; 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38441797

RESUMO

The objective of this study is to explore the correlation of metal levels with assisted reproductive technology (ART) outcomes in polycystic ovary syndrome (PCOS) patients. The individuals were recruited who met the research criteria, only tubal factor or male infertility served as the control group (n = 40) and patient group was PCOS patients (n = 35). Individuals (n = 75) were divided into PCOS group (n = 35) and control group (n = 40). The normal body mass index (BMI) group (control) includes women with BMI < 25 kg/m2 in PCOS group (n = 24) and control group (n = 33), and BMI ≥ 25 kg/m2 in PCOS group (n = 11) and control group (n = 7). We performed an analysis of insulin resistance (IR) (n = 15) group and without insulin resistance (NIR) group (n = 20) in PCOS patient and control patients. Comparing difference demographic data, ART outcomes and the metal levels in every group respectively, the correlation of metal levels and ART outcomes in control participants and PCOS patients were analyzed by the Spearman correlation analysis, and multiple linear regression model was used to examine the association between the concentration of 19 metals and ART outcomes in PCOS group and control group. Plasma manganese (Mn), titanium (Ti), sodium (Na), magnesium (Mg), copper (Cu), calcium (Ca)/Mg ratio, and Cu/zinc (Zn) ratio levels in PCOS patients were higher than that in control, while Zn and Ca levels were lower in PCOS patients than that in control. The Mg levels had a positive connection with the number of eggs recovered, and the iron (Fe) levels were positively associated with the number of transplanted embryos in PCOS-IR. In PCOS-NIR, Mn levels positively correlated with the number of follicles and the number of good embryos. Silver (Ag) levels were negatively correlated with the number of follicles, and aluminum (Al) levels were negatively related with the normal fertilization and the number of good embryos. The Spearman analysis in PCOS-BMI ≥ 25 group exhibited that nickel (Ni) levels were negatively associated with the number of follicles. The plasma metal levels seem to affect the clinical manifestations and in vitro fertilization outcomes in assisted reproduction.

5.
Nat Commun ; 15(1): 2167, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461148

RESUMO

Developing highly efficient catalysts is significant for Li-CO2 batteries. However, understanding the exact structure of catalysts during battery operation remains a challenge, which hampers knowledge-driven optimization. Here we use X-ray absorption spectroscopy to probe the reconstruction of CoSx (x = 8/9, 1.097, and 2) pre-catalysts and identify the local geometric ligand environment of cobalt during cycling in the Li-CO2 batteries. We find that different oxidized states after reconstruction are decisive to battery performance. Specifically, complete oxidation on CoS1.097 and Co9S8 leads to electrochemical performance deterioration, while oxidation on CoS2 terminates with Co-S4-O2 motifs, leading to improved activity. Density functional theory calculations show that partial oxidation contributes to charge redistributions on cobalt and thus facilitates the catalytic ability. Together, the spectroscopic and electrochemical results provide valuable insight into the structural evolution during cycling and the structure-activity relationship in the electrocatalyst study of Li-CO2 batteries.

6.
World J Gastrointest Oncol ; 16(2): 414-435, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38425399

RESUMO

BACKGROUND: Aberrant methylation is common during the initiation and progression of colorectal cancer (CRC), and detecting these changes that occur during early adenoma (ADE) formation and CRC progression has clinical value. AIM: To identify potential DNA methylation markers specific to ADE and CRC. METHODS: Here, we performed SeqCap targeted bisulfite sequencing and RNA-seq analysis of colorectal ADE and CRC samples to profile the epigenomic-transcriptomic landscape. RESULTS: Comparing 22 CRC and 25 ADE samples, global methylation was higher in the former, but both showed similar methylation patterns regarding differentially methylated gene positions, chromatin signatures, and repeated elements. High-grade CRC tended to exhibit elevated methylation levels in gene promoter regions compared to those in low-grade CRC. Combined with RNA-seq gene expression data, we identified 14 methylation-regulated differentially expressed genes, of which only AGTR1 and NECAB1 methylation had prognostic significance. CONCLUSION: Our results suggest that genome-wide alterations in DNA methylation occur during the early stages of CRC and demonstrate the methylation signatures associated with colorectal ADEs and CRC, suggesting prognostic biomarkers for CRC.

7.
Curr Neurovasc Res ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38551043

RESUMO

BACKGROUND: Recent research advancements have indicated a potential association between gut microbiota and cerebrovascular diseases, although the precise causative pathways and the directionality of this association remain to be fully elucidated. OBJECTIVE: This study utilized a bidirectional two-sample Mendelian Randomization (MR) methodology to explore the causal impact of gut microbiota compositions on the risk of cerebrovascular disease. METHODS: Genome-wide Association Study (GWAS) data pertaining to gut microbiota were obtained from the MiBioGen consortium. For Ischemic Stroke (IS), Transient Ischemic Attack (TIA), Vascular Dementia (VD), and Subarachnoid Hemorrhage (SAH), GWAS summary data were sourced from the FinnGen consortium, the IEU Open GWAS project, and the GWAS catalog, respectively. RESULTS: Our MR analyses identified that specific bacterial strains, notably those involved in the production of Short-chain Fatty Acids (SCFAs), including Barnesiella, Ruminococcus torques group, and Coprobacter, serve as protective factors against IS, TIA, and SAH. Linkage Disequilibrium Score Regression (LDSC) analysis corroborated a significant genetic correlation between these gut microbiota strains and various forms of cerebrovascular disease. In contrast, reverse MR analysis failed to establish a bidirectional causal relationship between genetically inferred gut microbiota profiles and these cerebrovascular conditions. CONCLUSION: This investigation has pinpointed particular strains of gut microbiota that play protective or detrimental roles in cerebrovascular disease pathogenesis. These findings offer valuable insights that could be pivotal for the clinical management, prevention, and treatment of cerebrovascular diseases.

8.
Int J Biol Sci ; 20(5): 1763-1777, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38481803

RESUMO

N6-methyladenosine (m6A), the most prevalent posttranscriptional RNA modification, involved in various diseases and cellular processes. However, the underlying mechanisms of m6A regulation in skin aging are still not fully understood. In this study, proteomics analysis revealed a significant correlation between Wilms' tumor 1-associating protein (WTAP) expression and cellular senescence. Next, upregulated WTAP was detected in aging skin tissues and senescent human dermal fibroblasts (HDFs). Functionally, overexpressed WTAP induced senescence and knockdown of WTAP rescued senescence of HDFs. Mechanistically, WTAP directly targeted ELF3 and promoted its expression in an m6A-dependent manner. Exogenous-ELF3 overexpression evidently reversed shWTAP-suppressed fibroblast senescence. Furthermore, ELF3 induced IRF8-mediated senescence-associated secretory phenotype (SASP) by binding to the (-817 to -804) site of the IRF8 promoter directly. In vivo, overexpression of WTAP evidently increased senescence cells in skin and induced skin aging. In summary, these findings revealed the critical role of WTAP-mediated m6A modification in skin aging and identified ELF3 as an important target of m6A modification in HDFs senescence, providing a new idea for delaying the aging process.


Assuntos
Senescência Celular , Fenótipo Secretor Associado à Senescência , Humanos , Adenosina , Proteínas de Ciclo Celular , Senescência Celular/genética , Proteínas de Ligação a DNA , Fatores Reguladores de Interferon , Proteínas Proto-Oncogênicas c-ets , RNA , Fatores de Processamento de RNA , Fatores de Transcrição
9.
Rev Sci Instrum ; 95(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38497835

RESUMO

Two-dimensional electronic spectroscopy (2DES) can be implemented with different geometries, e.g., BOXCARS, collinear, and pump-probe geometries. The pump-probe geometry has the advantage of overlapping only two beams and reducing phase cycling steps. However, its applications are typically limited to observing the dynamics with single-quantum coherence and population, leaving the challenge to measure the dynamics of the double-quantum (2Q) coherence, which reflects the many-body interactions. We demonstrate an experimental technique in 2DES under pump-probe geometry with a designed pulse sequence and the signal processing method to extract 2Q coherence. In the designed pulse sequence, with the probe pulse arriving earlier than the pump pulses, our measured signal includes the 2Q signal as well as the zero-quantum signal. With phase cycling and data processing using causality enforcement, we extract the 2Q signal. The proposal is demonstrated with rubidium atoms. We observe the collective resonances of two-body dipole-dipole interactions in both the D1 and D2 lines.

10.
Biochem Biophys Res Commun ; 703: 149687, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38368674

RESUMO

BACKGROUND: ZNF468 is a relatively unexplored gene that has been implicated in potential oncogenic properties in various cancer types. However, the exact role of ZNF468 in radiotherapy resistance of esophageal squamous cell carcinomas (ESCCs) is not well understood. METHODS: Bioinformatic analysis was performed using the TCGA database to assess ZNF468 expression and prognostic significance in pan-cancer and ESCC. Functional experiments were conducted using ZNF468 overexpressing and knockdown cell lines to assess its impact on cell survival, DNA damage response, cell cycle, and apoptosis upon radiation. A luciferase reporter assay was utilized to validate ZNF468 binding to the AURKA promoter. RESULTS: ZNF468 was significantly upregulated in diverse cancer types, including ESCC, and its high expression correlated with adverse prognosis in specific tumors. In the ESCC cohort, ZNF468 exhibited substantial upregulation in post-radiotherapy tissues, indicating its potential role in conferring radiotherapy resistance. Functional experiments revealed that ZNF468 enhances cell viability and facilitates DNA damage repair in radiotherapy-treated ESCC cells, while dampening the G2/M cell cycle arrest and apoptosis induced by radiation. Moreover, ZNF468 facilitated AURKA transcription, resulting in upregulated Aurora A expression, and subsequently inhibited P53 expression, unveiling key molecular mechanisms underlying radiotherapy resistance in ESCC. CONCLUSION: ZNF468 plays an oncogenic role in ESCC and contributes to radiotherapy resistance. It enhances cell survival while dampening radiation-induced G2/M cell cycle arrest and apoptosis. By modulating AURKA and P53 expression, ZNF468 represents a promising therapeutic target for enhancing radiotherapy efficacy in ESCC.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Apoptose/genética , Aurora Quinase A/genética , Aurora Quinase A/metabolismo , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células/genética , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/radioterapia , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/radioterapia , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Tolerância a Radiação/genética , Proteína Supressora de Tumor p53
11.
Opt Express ; 32(3): 2929-2941, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38297529

RESUMO

Developing from transient absorption (TA) spectroscopy, two-dimensional (2D) spectroscopy with pump-probe geometry has emerged as a versatile approach for alleviating the difficulty in implementing 2D spectroscopy with other geometries. However, the presence of cross-phase modulation (XPM) in TA spectroscopy introduces significant spectral distortions, particularly when the pump and probe pulses overlap. We demonstrate that this phenomenon is extended to the 2D spectroscopy with pump-probe geometry and the XPM is induced by the interference of the two pump pulses. We present the oscillatory behavior of XPM in the 2D spectrum and its displacement with respect to the waiting time delay through both experimental measurements and numerical simulations. Additionally, we explore the influence of probe pulse chirp on XPM and discover that by compressing the chirp, the impact of XPM on the desired signal can be reduced.

12.
Cell Commun Signal ; 22(1): 147, 2024 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-38388921

RESUMO

BACKGROUND: Patients with Alzheimer's disease (AD) are often co-morbid with unprovoked seizures, making clinical diagnosis and management difficult. Although it has an important role in both AD and epilepsy, abnormal γ-aminobutyric acid (GABA)ergic transmission is recognized only as a compensative change for glutamatergic damage. Neuregulin 1 (NRG1)-ErbB4 signaling can promote GABA release and suppress epileptogenesis, but its effects on cognition in AD are still controversial. METHODS: Four-month-old APPswe/PS1dE9 mice (APP mice) were used as animal models in the early stage of AD in this study. Acute/chronic chemical-kindling epilepsy models were established with pentylenetetrazol. Electroencephalogram and Racine scores were performed to assess seizures. Behavioral tests were used to assess cognition and emotion. Electrophysiology, western blot and immunofluorescence were performed to detect the alterations in synapses, GABAergic system components and NRG1-ErbB4 signaling. Furthermore, NRG1 was administrated intracerebroventricularly into APP mice and then its antiepileptic and cognitive effects were evaluated. RESULTS: APP mice had increased susceptibility to epilepsy and resulting hippocampal synaptic damage and cognitive impairment. Electrophysiological analysis revealed decreased GABAergic transmission in the hippocampus. This abnormal GABAergic transmission involved a reduction in the number of parvalbumin interneurons (PV+ Ins) and decreased levels of GABA synthesis and transport. We also found impaired NRG1-ErbB4 signaling which mediated by PV+ Ins loss. And NRG1 administration could effectively reduce seizures and improve cognition in four-month-old APP mice. CONCLUSION: Our results indicated that abnormal GABAergic transmission mediated hippocampal hyperexcitability, further excitation/inhibition imbalance, and promoted epileptogenesis in the early stage of AD. Appropriate NRG1 administration could down-regulate seizure susceptibility and rescue cognitive function. Our study provided a potential direction for intervening in the co-morbidity of AD and epilepsy.


Assuntos
Doença de Alzheimer , Epilepsia , Humanos , Camundongos , Animais , Lactente , Receptor ErbB-4/metabolismo , Doença de Alzheimer/complicações , Hipocampo/metabolismo , Ácido gama-Aminobutírico , Convulsões , Neuregulina-1/metabolismo
13.
Heliyon ; 10(4): e25694, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38390163

RESUMO

Objective: To analyse four cases of intervention via the internal mammary artery-anterior descending branch and provide and summarise the clinical treatment experience. Methods: The clinical data of four patients with distal restenosis of a left anterior descending artery (LAD) anastomosis after left internal mammary artery (LIMA)-LAD bypass surgery, who were admitted to the Gansu Institute of Cardiovascular Diseases between March 2013 and April 2022, were retrospectively analysed and reviewed together with the relevant literature. Results: Among the four patients, one was treated with intracoronary stenting via the internal mammary artery route, two were treated with intracoronary drug-coated balloon dilation (one of whom underwent fractional flow reserve [FFR] testing), and two underwent FFR testing (one of whom had a negative test result until the end of the procedure and continued to take medication during follow-up; the other patient had a positive result and further interventions). There were no deaths or postoperative complications in the group, and the patients were followed up for 4 months to 9 years, with good long-term outcomes. Conclusion: Percutaneous coronary intervention (PCI) via the internal mammary artery route is safe and effective, and patients with anastomotic distal stenosis or anastomotic stenosis of LAD bypass anastomosis may be considered for PCI via the internal mammary artery route.

14.
Gut ; 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38395437

RESUMO

OBJECTIVE: Hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC), mostly characterised by HBV integrations, is prevalent worldwide. Previous HBV studies mainly focused on a few hotspot integrations. However, the oncogenic role of the other HBV integrations remains unclear. This study aimed to elucidate HBV integration-induced tumourigenesis further. DESIGN: Here, we illuminated the genomic structures encompassing HBV integrations in 124 HCCs across ages using whole genome sequencing and Nanopore long reads. We classified a repertoire of integration patterns featured by complex genomic rearrangement. We also conducted a clustered regularly interspaced short palindromic repeat (CRISPR)-based gain-of-function genetic screen in mouse hepatocytes. We individually activated each candidate gene in the mouse model to uncover HBV integration-mediated oncogenic aberration that elicits tumourigenesis in mice. RESULTS: These HBV-mediated rearrangements are significantly enriched in a bridge-fusion-bridge pattern and interchromosomal translocations, and frequently led to a wide range of aberrations including driver copy number variations in chr 4q, 5p (TERT), 6q, 8p, 16q, 9p (CDKN2A/B), 17p (TP53) and 13q (RB1), and particularly, ultra-early amplifications in chr8q. Integrated HBV frequently contains complex structures correlated with the translocation distance. Paired breakpoints within each integration event usually exhibit different microhomology, likely mediated by different DNA repair mechanisms. HBV-mediated rearrangements significantly correlated with young age, higher HBV DNA level and TP53 mutations but were less prevalent in the patients subjected to prior antiviral therapies. Finally, we recapitulated the TONSL and TMEM65 amplification in chr8q led by HBV integration using CRISPR/Cas9 editing and demonstrated their tumourigenic potentials. CONCLUSION: HBV integrations extensively reshape genomic structures and promote hepatocarcinogenesis (graphical abstract), which may occur early in a patient's life.

15.
ACS Appl Mater Interfaces ; 16(7): 9088-9097, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38319245

RESUMO

The nonclassical ten-pi-electron 5,5-fused thieno[3,4-c]thiadiazole (TTD) unit is an excellent building block for constructing sub-silicon-band gap organic semiconductors. However, no small molecule acceptor (SMA) materials based on TTD have been reported despite the fact that high-sensitivity near-infrared organic photodetectors (OPDs) are generally achieved by using SMAs. In this work, we report a TTD-based narrow band gap (0.95 eV) SMA material TTD(DTC-2FIC)2 with strong near-infrared absorption. Employing PTB7-Th as a donor, OPDs based on TTD(DTC-2FIC)2 exhibit an optimized responsivity of 0.095 (±0.007) A W-1 at 1100 nm and sustain a decent responsivity of 0.074 (±0.008) A W-1 at 1200 nm. Moreover, a good specific detectivity over 1 × 1011 Jones is achieved at a wavelength of 1200 nm. Detailed characterizations imply that the performance of TTD(DTC-2FIC)2-based OPDs may be substantially improved by choosing lower-mixing donors with shallower energy levels. This work demonstrates that SMAs incorporating TTD as the core unit hold promise for constructing high-sensitivity sub-silicon-band gap OPDs.

16.
Nat Commun ; 15(1): 753, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38272872

RESUMO

Aqueous zinc batteries possess intrinsic safety and cost-effectiveness, but dendrite growth and side reactions of zinc anodes hinder their practical application. Here, we propose the extended substrate screening strategy for stabilizing zinc anodes and verify its availability (dsubstrate: dZn(002) = 1: 1→dsubstrate: dZn(002)=n:1, n = 1, 2). From a series of calculated phyllosilicates satisfying dsubstrate ≈ 2dZn(002), we select vermiculite, which has the lowest lattice mismatch (0.38%) reported so far, as the model to confirm the effectiveness of "2dZn(002)" substrates for zinc anodes protection. Then, we develop a monolayer porous vermiculite through a large-scale and green preparation as a functional coating for zinc electrodes. Unique "planting Zn(002) seeds" mechanism for "2dZn(002)" substrates is revealed to induce the oriented growth of zinc deposits. Additionally, the coating effectively inhibits side reactions and promotes zinc ion transport. Consequently, the modified symmetric cells operate stably for over 300 h at a high current density of 50 mA cm-2. This work extends the substrate screening strategy and advances the understanding of zinc nucleation mechanism, paving the way for realizing high-rate and stable zinc-metal batteries.

17.
Acta Parasitol ; 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233676

RESUMO

PURPOSE: Radiotherapy showed the potential to effectively kill the cysts of pulmonary cystic echinococcosis (CE). However, little is known about its safety. This study was designed to investigate the safety of three-dimensional conformal radiotherapy (3D-CRT) on the normal lung tissue adjacent to the cyst and blood of sheep naturally infected with pulmonary CE. METHODS: Twenty pulmonary CE sheep were randomly divided into control group (n = 5) and radiation groups with a dose of 30 Gray (Gy) (n = 5), 45 Gy (n = 5), and 60 Gy (n = 5), respectively. Animals in control group received no radiation. Heat shock protein 70 (Hsp70), tumor growth factor-ß (TGF-ß), matrix metalloproteinase-2 (MMP-2) and MMP-9 in the lung tissues adjacent to the cysts, which were considered to be closely related to the pathogenesis of CE, were evaluated after 3D-CRT. A routine blood test was conducted. RESULTS: The results showed that there were multiple cysts of various sizes with protoscoleces in the lung tissues of sheep, and necrotic cysts were found after 3D-CRT. 3D-CRT significantly increased the mRNA level of Hsp70, enhanced the protein level of TGF-ß and slightly increased the expression of MMP-2 and MMP-9 in lung tissues adjacent to the cysts. 3D-CRT did not significantly alter the amount of WBC, HB and PLT in sheep blood. CONCLUSIONS: The results suggested that 3D-CRT may suppress the inflammation and induce less damage of the normal lung tissues and blood. We preliminarily showed that 3D-CRT under a safe dose may be used to treat pulmonary CE.

18.
Exp Dermatol ; 33(1): e14812, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37086043

RESUMO

Rosacea is a complex chronic inflammatory skin disorder with high morbidity. Pyroptosis is known as a regulated inflammatory cell death. While its association with immune response to various inflammatory disorders is well established, little is known about its functional relevance of rosacea. So, we aimed to explore and enrich the pathogenesis involved in pyroptosis-related rosacea aggravations. In this study, we evaluated the pyroptosis-related patterns of rosacea by consensus clustering analysis of 45 ferroptosis-related genes (FRGs), with multiple immune cell infiltration analysis to identify the pyroptosis-mediated immune response in rosacea using GSE65914 dataset. The co-co-work between PRGs and WGCNA-revealed hub genes has established using PPI network. FRG signature was highlighted in rosacea using multi-transcriptomic and experiment analysis. Based on this, three distinct pyroptosis-related rosacea patterns (non/moderate/high) were identified, and the notably enriched pathways have revealed through GO, KEGG and GSEA analysis, especially immune-related pathways. Also, the XCell/MCPcount/ssGSEA/Cibersort underlined the immune-related signalling (NK cells, Monocyte, Neutrophil, Th2 cells, Macrophage), whose hub genes were identified through WGCNA (NOD2, MYD88, STAT1, HSPA4, CXCL8). Finally, we established a pyroptosis-immune co-work during the rosacea aggravations. FRGs may affect the progression of rosacea by regulating the immune cell infiltrations. In all, pyroptosis with its mediated immune cell infiltration is a critical factor during the development of rosacea.


Assuntos
Piroptose , Rosácea , Humanos , Piroptose/genética , Rosácea/genética , Pele , Proteínas Adaptadoras de Transdução de Sinal , Perfilação da Expressão Gênica
19.
JAMA Surg ; 159(2): 179-184, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38055231

RESUMO

Importance: Individuals who are incarcerated represent a vulnerable group due to concerns about their ability to provide voluntary and informed consent, and there are considerable legal protections regarding their participation in medical research. Little is known about the quality of surgical care received by this population. Objective: To evaluate perioperative surgical care provided to patients who are incarcerated within the Texas Department of Criminal Justice (TDCJ) and compare their outcomes with that of the general nonincarcerated population. Design, Setting, and Participants: This cohort study analyzed data from patients who were incarcerated within the TDCJ and underwent general or vascular surgery at the University of Texas Medical Branch (UTMB) from 2012 to 2021. Case-specific outcomes for a subset of these patients and for patients in the general academic medical center population were obtained from the American College of Surgeons National Quality Improvement Program (ACS-NSQIP) and compared. Additional quality metrics (mortality index, length of stay index, and excess hospital days) from the Vizient Clinical Data Base were analyzed for patients in the incarcerated and nonincarcerated groups who underwent surgery at UTMB in 2020 and 2021 to provide additional recent data. Patient-specific demographics, including age, sex, and comorbidities were not available for analysis within this data set. Main Outcome and Measures: Perioperative outcomes (30-day morbidity, mortality, and readmission rates) were compared between the incarcerated and nonincarcerated groups using the Fisher exact test. Results: The sample included data from 6675 patients who were incarcerated and underwent general or vascular surgery at UTMB from 2012 to 2021. The ACS-NSQIP included data (2012-2021) for 2304 patients who were incarcerated and 602 patients who were not and showed that outcomes were comparable between the TDCJ population and that of the general population treated at the academic medical center with regard to 30-day readmission (6.60% vs 5.65%) and mortality (0.91% vs 1.16%). However, 30-day morbidity was significantly higher in the TDCJ population (8.25% vs 5.48%, P = .01). The 2020 and 2021 data from the Vizient Clinical Data Base included 629 patients who were incarcerated and 2614 who were not and showed that the incarcerated and nonincarcerated populations did not differ with regard to 30-day readmission (12.52% vs 11.30%) or morbidity (1.91% vs 2.60%). Although the unadjusted mortality rate was significantly lower in the TDCJ population (1.27% vs 2.68%, P = .04), mortality indexes, which account for case mix index, were similar between the 2 populations (1.17 vs 1.12). Conclusions and Relevance: Findings of this cohort study suggest that patients who are incarcerated have equivalent rates of mortality and readmission compared with a general academic medical center population. Future studies that focus on elucidating the potential factors associated with perioperative morbidity and exploring long-term surgical outcomes in the incarcerated population are warranted.


Assuntos
Direito Penal , Complicações Pós-Operatórias , Humanos , Complicações Pós-Operatórias/mortalidade , Estudos de Coortes , Procedimentos Cirúrgicos Vasculares , Melhoria de Qualidade , Atenção à Saúde
20.
Adv Mater ; 36(1): e2309264, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37985147

RESUMO

Lithium-carbon dioxide (Li-CO2 ) batteries are regarded as a prospective technology to relieve the pressure of greenhouse emissions but are confronted with sluggish CO2 redox kinetics and low energy efficiency. Developing highly efficient and low-cost catalysts to boost bidirectional activities is craved but remains a huge challenge. Herein, derived from the spent lithium-ion batteries, a tandem catalyst is subtly synthesized and significantly accelerates the CO2 reduction and evolution reactions (CO2 RR and CO2 ER) kinetics with an in-built electric field (BEF). Combining with the theoretical calculations and advanced characterization techniques, this work reveals that the designed interface-induced BEF regulates the adsorption/decomposition of the intermediates during CO2 RR and CO2 ER, endowing the recycled tandem catalyst with excellent bidirectional activities. As a result, the spent electronics-derived tandem catalyst exhibits remarkable bidirectional catalytic performance, such as an ultralow voltage gap of 0.26 V and an ultrahigh energy efficiency of 92.4%. Profoundly, this work affords new opportunities to fabricate low-cost electrocatalysts from recycled spent electronics and inspires fresh perceptions of interfacial regulation including but not limited to BEF to engineer better Li-CO2 batteries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...